1,201 research outputs found

    Categorification of persistent homology

    Full text link
    We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are diagrams, indexed by the poset of real numbers, in some target category. The set of such diagrams has an interleaving distance, which we show generalizes the previously-studied bottleneck distance. To illustrate the utility of this approach, we greatly generalize previous stability results for persistence, extended persistence, and kernel, image and cokernel persistence. We give a natural construction of a category of interleavings of these diagrams, and show that if the target category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational Geometr

    Comparing persistence diagrams through complex vectors

    Get PDF
    The natural pseudo-distance of spaces endowed with filtering functions is precious for shape classification and retrieval; its optimal estimate coming from persistence diagrams is the bottleneck distance, which unfortunately suffers from combinatorial explosion. A possible algebraic representation of persistence diagrams is offered by complex polynomials; since far polynomials represent far persistence diagrams, a fast comparison of the coefficient vectors can reduce the size of the database to be classified by the bottleneck distance. This article explores experimentally three transformations from diagrams to polynomials and three distances between the complex vectors of coefficients.Comment: 11 pages, 4 figures, 2 table

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then d≤dId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Dualities in persistent (co)homology

    Full text link
    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm.Comment: 16 pages, 3 figures, submitted to the Inverse Problems special issue on Topological Data Analysi

    Persistent Intersection Homology for the Analysis of Discrete Data

    Full text link
    Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample---not necessarily a uniform one---of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with different dimensions. Algebraic topology typically analyzes such problems using intersection homology, an extension of homology that is capable of handling configurations with singularities. In this paper, we describe how the persistent variant of intersection homology can be used to assist data analysis in visualization. We point out potential pitfalls in approximating data sets with singularities and give strategies for resolving them.Comment: Topology-based Methods in Visualization 201

    Topological characteristics of oil and gas reservoirs and their applications

    Full text link
    We demonstrate applications of topological characteristics of oil and gas reservoirs considered as three-dimensional bodies to geological modeling.Comment: 12 page

    Gait-based gender classification using persistent homology

    Get PDF
    In this paper, a topological approach for gait-based gender recognition is presented. First, a stack of human silhouettes, extracted by background subtraction and thresholding, were glued through their gravity centers, forming a 3D digital image I. Second, different filters (i.e. particular orders of the simplices) are applied on ∂ K(I) (a simplicial complex obtained from I) which capture relations among the parts of the human body when walking. Finally, a topological signature is extracted from the persistence diagram according to each filter. The measure cosine is used to give a similarity value between topological signatures. The novelty of the paper is a notion of robustness of the provided method (which is also valid for gait recognition). Three experiments are performed using all human-camera view angles provided in CASIA-B database. The first one evaluates the named topological signature obtaining 98.3% (lateral view) of correct classification rates, for gender identification. The second one shows results for different human-camera distances according to training and test (i.e. training with a human-camera distance and test with a different one). The third one shows that upper body is more discriminative than lower body

    Topological Machine Learning with Persistence Indicator Functions

    Full text link
    Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.Comment: Topology-based Methods in Visualization 201

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure

    Hierarchies and Ranks for Persistence Pairs

    Full text link
    We develop a novel hierarchy for zero-dimensional persistence pairs, i.e., connected components, which is capable of capturing more fine-grained spatial relations between persistence pairs. Our work is motivated by a lack of spatial relationships between features in persistence diagrams, leading to a limited expressive power. We build upon a recently-introduced hierarchy of pairs in persistence diagrams that augments the pairing stored in persistence diagrams with information about which components merge. Our proposed hierarchy captures differences in branching structure. Moreover, we show how to use our hierarchy to measure the spatial stability of a pairing and we define a rank function for persistence pairs and demonstrate different applications.Comment: Topology-based Methods in Visualization 201
    • …
    corecore